→ Модель радиолокатора с синтезированной апертурой антенны. Радиолокационные системы с синтезированной апертурой

Модель радиолокатора с синтезированной апертурой антенны. Радиолокационные системы с синтезированной апертурой

Проблема радикального повышения разрешающей способности в направлении, перпендикулярном оси ДНА, особенно актуальна для РЛС обзора поверхности под летательным или космическим аппаратом, поскольку в направлении оси ДНА достижимо очень высокое разрешение при соответствующем расширении спектра сигнала РЛС. Если излучение антенны направлено перпендикулярно вектору скорости РЛС, т. е. осуществляется боковой обзор, то перемещение антенны относительно облучаемой поверхности позволяет получить при оптимальной обработке отраженных сигналов очень высокое разрешение и в направлении, перпендикулярном оси ДНА. Таким образом решается задача получения радиолокационного изображения высокой четкости.

Повышение разрешения при боковом обзоре можно рассматривать как результат сжатия ДНА при оптимальной обработке (аналогично сжатию импульса с внутриим-пульсной модуляцией) или как формирование диаграммы синтезированной антенной решеткой, образующейся при перемещении антенны РЛС относительно облучаемой поверхности.

Рассмотрим принцип действия и потенциальные возможности самолетной РЛС бокового обзора. Антенна станции вытянута вдоль оси самолета и формирует ДНА, узкую в горизонтальной и широкую в вертикальной плоскости, ориентированную перпендикулярно оси самолета. Обычно создаются две идентичных ДНА по обе стороны оси самолета, что в данном случае несущественно.

При длине волны излучаемых РЛС колебаний и продольном размере антенны ширина ДНА в горизонтальной плоскости . Считая для простоты излучение ограниченным в горизонтальной плоскости углом , найдем время облучения точки поверхности на расстоянии D от РЛС:

где - скорость самолета, которая считается постоянной; - линейная ширина ДНА на расстоянии D от РЛС. Радиальная составляющая скорости относительно точек облучаемой поверхности (рис. 18.7,а), где - угол между осью ДНА в горизонтальной плоскости и направлением на рассматриваемую точку . Таким образом, на оси ДНА , а на краях достигает максимального значения . Так как в РЛС бокового обзора применяются узкие ДНА, то можно считать . За счет радиальной составляющей скорости возникает доплсровский сдвиг частоты отраженного сигнала, изменяющийся по линейному закону от до . Таким образом, при пролете расстояния принимается частотно-модулированный импульс длительностью (рис. 18.7,б) с девиацией частоты .

При оптимальной согласованной обработке такой импульс может быть сжат до импульса длительностью, обратной ширине спектра сигнала и приближенно равной . Следовательно, . Так как , то . Заметим, что на выходе сжимающего фильтра огибающая импульса имеет форму и его длительность (измеряемая на уровне 0,64 максимального значения) определяет предельное разрешение по времени, которое соответствует расстоянию , разрешаемому в направлении вектора V, перпендикулярном оси ДНА.

Следовательно, при когерентной обработке разрешаемое расстояние не зависит от дальности и ограничено значением, равным . Этот вывод, сначала кажущийся парадоксальным, становится понятным при анализе разрешающей способности РЛС бокового обзора с точки зрения синтезирования раскрыва.

Если все отраженные сигналы на протяжении когерентно (т. е. с учетом фазы) суммировать, то можно сформировать (синтезировать) ДНА шириной

причем коэффициент 2 учитывает набег фазы при прохождении сигналом расстояния D «туда и обратно».

Разрешаемое по направлению полета (перпендикулярно оси ДНА) расстояние

Отрезок пути L, на котором производится когерентное суммирование отраженных сигналов, определяет размер синтезированного раскрыва , так как такое суммирование аналогично приему сигнала на сннфазную антенну с размером раскрыва, равным . Отсюда становится ясно, почему разрешаемое расстояние снижается, т. е. разрешение растет при уменьшении раскрыва реальной антенны и не зависит от D. Это объясняется увеличением синтезированного раскрыва прямо пропорционально ширине ДНА РЛС и дальности рассматриваемой точки .

Однако с увеличением растут и трудности обеспечения когерентности при обработке сигналов. Поэтому антенны РЛС бокового обзора для получения малых значений должны иметь значительные размеры раскрыва , что позволяет реализовать когерентную обработку, обеспечивающую приближение к потенциальной разрешающей способности системы с синтезированным раскрывом, определяемой формулой (18.27).

При переходе от непрерывного сигнала к импульсному с периодом синтезированная антенна аналогична антенной решетке, расстояния между элементами которой равны . В РЛС бокового обзора обычно применяется импульсное излучение, поэтому такие РЛС называют станциями с синтезированной антенной решеткой.

С излучением каждого импульса антенна РЛС становится элементом синтезированной решетки, дальность которого от рассматриваемой точки поверхности равна кратчайшему расстоянию (рис. 18.7, а) только в тот момент, когда рассматриваемая точка оказывается на оси ДНА. На краях синтезированной решетки расстояние отличается от на

Этой разности расстояний соответствует максимальная азовая задержка сигнала . Если в процессе полета изменяющиеся фазовые задержки фиксируются и учитываются при обработке, то синтезированные решетки называются фокусированными. Система обработки сигнала в этом случае получается сложной, поэтому необходимо выяснить, к каким потерям разрешающей способности приводит отказ от «фокусировки», т. е. переход к нефокусированной обработке без учета фазовых сдвигов. В этом случае допустима разность хода на концах синтезированного раскрыва , что соответствует максимальному фазовому сдвигу . Из этого условия можно найти размер эффективного раскрыва синтезированной антенны. Из рис. 18.7, в видно, что и, следовательно,

Таким образом, при отсутствии фокусировки ширина ДНА синтезированного раскрыва размером , а соответствующее линейное разрешение

Для обработки сигнала без коррекции (фокусировки) пригоден обычный экспоненциальный накопитель с линией задержки на период повторения импульсов . Ясно, что названия фокусированная и сированная системы появились по аналогии с оптической системой, в которой при полностью открытой диафрагме необходима фокусировка объектива (наводка на резкость).

При сильном диафрагмировании достаточная четкость (резкость) обеспечивается без фокусировки при постоянной установке объектива на бесконечность.

Следовательно, при фокусированной обработке сигнала (фокусированный раскрыв) достижимо максимальное линейное разрешение в направлении, перпендикулярном ДНА, независимо от дальности при нефокуси-рованной обработке (нефокусированный раскрыв) для обычной антенны с размером раскрыва разрешение .

Зависимость разрешающей способности от дальности D для этих случаев представлена на рис. 18.8.

Таким образом, для полной реализации потенциальных возможностей синтезированной антенны необходима обработка сигнала с внесением фазовых поправок в соответствии с положением рассматриваемой точки относительно антенны РЛС. В импульсных РЛС сигнал повторяется с периодом и поправки вводятся дискретно в моменты времени , отсчитываемые от времени приема среднего импульса, отраженного в тот момент времени, когда данная точка находится на траверсе пролетающего самолета.

Согласованный фильтр для сигнала точечной цели при известной дальности и скорости РЛС относительно цели соответствует схеме когерентного фильтра для пачки импульсов, при этом амплитуды импульсов умножаются на весовые коэффициенты и смещаются по фазе на значение поправки . Такая обработка (фокусировка) требуется для каждого элемента дальности, т. е. необходим фильтр для каждой дальности (дискретность зависит от разрешающей способности по дальности, определяемой шириной спектра сигнала), причем параметры фильтра должны изменяться при изменении скорости перемещения РЛС.

Требования к устройству обработки задаются прежде всего временем синтезирования, равным в фокусированных системах . Так, при скорости самолета , заданном разрешении на дальности при работе РЛС на волне требуемый размер синтезированной апертуры . В этом случае . При частоте повторения импульсов число суммируемых при обработке сигналов для каждого элемента дальности, число которых в полосе обзора по дальности может достигать . Число уровней квантования определяет разрядность устройства обработки . Таким образом, общий объем обрабатываемой информации . При наличии квадратурных каналов значение удваивается и имеет порядок 108 бит. С учетом коррекции фазы в каждом периоде повторения требумое быстродействие обработки в подобных системах достигает .

Несмотря на относительную сложность, цифровая реализация устройств обработки при использовании современной элементной базы возможна, особенно при осуществлении обработки на видеочастоте. Достоинством цифровой обработки является возможность получения изображения местности под самолетом или спутником в реальном времени.

Если допустима задержка при получении изображения (например, при картографировании), то целесообразно применять оптические методы обработки сигналов при синтезировании раскрыва, поскольку оптические устройства обеспечивают многоканальную когерентную обработку сигналов сразу для всех элементов дальности.

Принцип обработки заключается в следующем. Принимаемые сигналы фиксируются на фотопленке, протягиваемой со скоростью, пропорциональной скорости самолета V, при этом строки дальности располагаются поперек пленки. На определенном расстоянии от начала каждой строки, пропорциональном дальности рассматриваемой точки D, записываются отраженные сигналы в течение времени запись в продольном направлении (вдоль пленки) в соответствующем масштабе передает распределение сигналов вдоль синтезируемого раскрыва .

После проявления (время проявления и определяет задержку в обработке) пленка протягивается перед окном оптического устройства, одновременно облучаясь однородным когерентным световым пучком. Плоская световая волна, проходя через пленку, модулируется по амплитуде и фазе записанным сигналом. Размеры пятна, полученного на оптическом экране или другой фотопленке на выходе оптического фильтра, соответствуют ширине диаграммы направленности синтезированной антенны , которая во много раз меньше ширины диаграммы направленности реальной антенны . Подбором параметров элементов (линз) оптического фильтра можно обеспечить когерентную обработку и получить высокую четкость синтезированного радиолокационного изображения. Именно с помощью РЛС бокового обзора с синтезированием раскрыва, расположенной на искусственном спутнике Венеры, советским исследователям удалось получить четкое радиолокационное изображение этой планеты, закрытой для оптического наблюдения.

Синтезирование апертуры (СА) - метод обработки сигналов, позволяющий существенно повысить поперечную линейную разрешающую способность радиолокатора относительно направления ДНА и улучшить детальность радиолокационного изображение местности. Используется СА для получения радиолокационной карты (при картографировании), разведке ледовой обстановки и в других ситуациях. По качеству и детальности такие карты сравнимы с аэрофотоснимками, но в отличие от последних могут быть получены в отсутствие оптической видимости земной поверхности (при полете над облаками и ночью).

14.1. Принцип действия и устройство РЛС с СА

Детальность радиолокационного изображения зависит от линейной разрешающей способности радиолокатора. При использовании полярных координат разрешающая способность по дальности (радиальная разрешающая способность) определяется параметрами зондирующего сигнала, а в поперечном направлении (тангенциальная разрешающая способность) шириной ДНА радиолокатора и расстоянием до цели (рис. 14.1). Детальность радиолокационного изображения местности тем выше, чем меньше т.е. она зависит от величины (площади) элемента разрешения.

Рис. 14.1. Параметры, характеризующие детальность радиолокационного изображения

Поскольку задача уменьшения решается использованием зондирующих сигналов с малой длительностью импульсов или переходом к сложным сигналам (частотно-модулированным или фазо-манипулированным). Уменьшения требует использования узких ДНА, так как пропорциональна ширине ДНА, а (к - длина волны; длина антенны), которая не может быть больше продольного размера (длины) летательного аппарата. Основной путь повышения тангенциальной разрешающей способности - применение в радиолокаторах метода синтезирования

апертуры антенны при движении ЛА. Чаще всего РЛС с СА используют в так называемых радиолокаторах бокового обзора (рис. 14.2).

В радиолокаторах, у которых антенна размещена вдоль фюзеляжа, и она тем выше, чем больше продольный размер фюзеляжа ЛА. Поскольку конструктивно ограничивает размер внутренней антенны то и детальность изображения в радиолокаторах с вдоль фюзеляжными антеннами улучшается, хотя зависимость от дальности сохраняется.

Более радикальный путь приводит к радиолокаторам с синтезированием апертуры (РСА) при поступательном движении ЛА.

Рис. 14.2. Диаграммы направленности радиолокатора бокового обзора

Принцип синтезирования апертуры. Пусть линейная ФАР размером (апертурой) (рис. 14.3,а) состоит из излучателей. Суммируя принятые облучателями сигналы, можно в каждый момент времени получать диаграмму ФАР с шириной Если для обеспечения заданной требуется можно синтезировать ФАР, последовательно перемещая один излучатель (антенну) вдоль этой апертуры с некоторой скоростью V, принимая отраженные от цели сигналы, запоминая их, а затем совместно обрабатывая (рис. 14.3,б). При этом синтезируется апертура линейной антенны с эффективным размером и

ДНА шириной однако увеличиваются затраты времени на синтезирование и усложняется аппаратура радиолокатора.

Пусть ЛА движется на некоторой высоте с постоянной скоростью V прямолинейно и параллельно земной поверхности (рис. 14.4).

Рис. (4.3. Фазированная антенная решетка (а) и схема синтезирования апертуры при перемещении излучателя (б)

Антенна, имеющая ДНА шириной и повернутая на 90° к линии пути, последовательно проходит ряд положений в которых принимает сигналы, отраженные от цели, находящейся в точке на земной поверхности. При различных положениях антенны (различных ) сигналы от одной и той же точки проходят разные расстояния что приводит к изменению фазовых сдвигов этих сигналов, вызываемых разностью хода Поскольку сигнал проходит дважды (в направлении цели и от нее), два сигнала, принятые при соседних положениях антенны, отличаются по фазе на

В зависимости от того, компенсируются или нет при обработке принятых сигналов фазовые набеги (образующиеся на отрезках различают фокусированные и нефокусированные РСА. В первом случае обработка сводится к перемещению антенн, запоминанию сигналов, компенсации фазовых набегов и суммированию сигналов (см. рис. а во втором - к тем же операциям, но без компенсации фазовых набегов.

Рис. 14.4. Появление фазовых сдвигов в процессе прямолинейного движения ЛА при синтезировании апертуры

Тангенциальная разрешающая способность РСА. Нефокусированная обработка обеспечивает сложение сигналов V, при разности фаз сигналов с крайних и центрального элементов апертуры Если положить то максимальное значение составит Из рис. 14.4 следует поэтому, если то

Таким образом, при суммировании сигналов на участке траектории, равном ширина синтезированной ДНА составит

При этом тангенциальная разрешающая способность а при произвольном расстоянии до цели (рис. 14.5).

Рис. 14.5. Зависимость тангенциальной разрешающей способности от дальности в обычном радиолокаторе (1), в пефокусированном РЛ с СА (2) и в фокусированном РЛ с СА (3)

При фокусированной обработке сигналы суммируются на участке смешения реальной установленной на ЛА антенны, на котором облучается находящаяся в точке цель:

В этом случае ширина синтезированной ДНА

а тангенциальная разрешающая способность

Структурная схема РСА. Основу РСА составляют когерентно-импульсные радиолокаторы, построенные по схеме с внутренней когерентностью (рис. 14.6).

Когерентный генератор (КГ) на частоте служит для формирования в однополосном модуляторе зондирующего сигнала с частотой Источником колебаний с частотой является генератор радиочастоты (ГРЧ). Зондирующий сигнал модулируется импульсной последовательностью с модулятора Усилитель мощности (УМ) представляет собой оконечный каскад передатчика. Обработка сигналов (запоминание, компенсация фаз, суммирование) обычно выполняется комплексными цифровыми фильтрами на низкой частоте, поэтому в схеме предусматривают квадратурные каналы, каждый из которых начинается с соответствующего фазового детектора. Источником опорного напряжения для фазовых детекторов служит когерентный гетеродин (КГ). Сигналы квадратурных каналов (сохраняющих информацию о фазе) подаются либо на устройство записи либо на устройство цифровой обработки в реальном масштабе времени (УОС). При аналоговой обработке сигналов в РЛС с СА информация с выходов квадратурных фазовых детекторов подается в специальное устройство для записи, например, в оптическое устройство записи на фотопленку изображения с экрана электроннолучевой трубки, модулированного по яркости

Рис. 14.6. Структурная схема радиолокатора с синтезированием апертуры

свечения пятна. Обработка и воспроизведение информации происходят позднее, после обработки пленки с запаздыванием во времени (не в реальном масштабе времени).

При цифровой обработке сигналов результирующая информация получается сразу в процессе обработки в реальном масштабе времени.

Принципы обработки сигналов в РСА. При любом виде обработки необходимо запоминание кадра информации о сигналах целей.

Размеры кадра задаются по азимуту эффективным значением синтезируемой апертуры и по дальности (рис. 14.7,а).

Поскольку принимаемые при каждом положении антенны сигналы поступают на вход приемника с просматриваемой дистанции последовательно во времени, записываются они также последовательно в каждый из азимутальных каналов, что условно показано стрелками на рис. 14.7, б. При этом формируется соответствующий участку местности кадр изображения с размерами Получить информацию об угловом положении цели, т.е. о координате х, при синтезировании апертуры можно только при анализе отраженных от этой цели сигналов, записанных на интервале синтезирования Поэтому информация с устройства записи считывается последовательно в каждом из каналов дальности (рис. 14.7,в).

Рис. 14.7. Запоминаемый кадр местности (а): диаграммы записи (б) и считывания (в) ситапов

Сигнал, обрабатываемый в РСА. Пусть радиолокатор работает в импульсном режиме. Тогда за период повторения антенна смещается на отрезок

Для исключения пропуска цели при таком смещении антенны потребуем чтобы на рис. 14.8. При этом формируется соответствующий участку местности кадр изображения с размерами и Получить информацию об угловом положении цели, т.е. о координате х, при синтезировании апертуры можно только при анализе отраженных от этой цели сигналов, записанных на интервале синтезирования Поэтому информация с устройства записи считывается последовательно в каждом из каналов дальности (см. рис. 14.7,а). Допустим теперь, что неподвижен, а цель

Рис. 14.8. Кинематика взаимного смешения и точечной цели

движется относительно него с той же скоростью V (рис. 14.9,а). Начиная отсчет времени с момента прохода целью (точка М) середины апертуры и считая имеем

При проходе цели через диаграмму направленности доплеровский сдвиг частоты (рис. и фаза (рис. 14.9,в) меняются по законам:

Отметим, что коэффициенты при постоянных в полете "к и V зависят от следовательно, обработка сигналов многоканальна по дальности.

Комплексную амплитуду отраженных сигналов при синтезировании апертуры можно представить в виде

Рис. 14.9. Схема формирования вектора радиальной скорости (а); характер изменения доплеровской частоты (б) и фазы (в) сигнала при пролете цели

В импульсном радиолокаторе сигнал приходит в дискретные моменты времени, поэтому Тогда

Дискретные составляющие сигнала (14.4) необходимо запомнить на интервале времени , где

Алгоритмы обработки сигнала в РСА. Для оптимальной обработки сигнала (14.4) необходим фильтр с импульсной переходной характеристикой

Угловая разрешающая способность – важнейшая характеристика любой телескопической системы. Оптика утверждает, что это разрешение однозначно связано с длиной волны, на которой осуществляется наблюдение, и с диаметром входной апертуры телескопа. С большими диаметрами, как известно, большая проблема. Вряд ли когда-нибудь будет построен телескоп больше этого .
Одним из способов значительного увеличения разрешающей способности является применяемый в радиоастрономии и радиолокации метод синтезирования больших и сверхбольших апертур. В миллиметровом диапазоне самую большую апертуру - 14 км - обещают формировать 66-ю антеннами проекта ALMA в Чили.

Перенос методов апертурного синтеза в оптическую область, где длины волн на несколько порядков меньше, чем у радиолокаторов, связан с развитием техники лазерного гетеродинирования .

1.Физические основы формирования изображений.

Не будет ошибкой сказать, что изображение в любом оптическом устройстве формируется дифракцией света на входной апертуре, и более ничем. Посмотрим на изображение объекта из центра апертуры. Угловое распределение яркости изображения бесконечно удаленного точечного источника света (как, впрочем, и любого другого) будет одинаково для линзы и камеры-обскуры равного диаметра. Отличие линзы от обскуры заключается лишь в том, что линза переносит формируемое своей апертурой изображение из бесконечности в свою фокальную плоскость. Или, говоря иначе, производит фазовое преобразование входного плоского волнового фронта в сферически сходящийся. Для удаленного точечного источника и круглой апертуры изображение - это всем известная картина Эйри с кольцами .


Угловой размер диска Эйри можно в принципе уменьшить и как будто увеличить разрешение (по рэлеевскому критерию), если задиафрагмировать апертуру специальным образом. Существует такое распределение пропускания по радиусу, при котором центральный диск теоретически можно сделать произвольно малым. Однако при этом световая энергия перераспределяется по кольцам и контраст сложного изображения падает до нуля.

С математической точки зрения процедура формирования дифракционного изображения сводится к двухмерному преобразованию Фурье от входного светового поля (в скалярном приближении поле описывается комплексной функцией координат и времени). Любое изображение, регистрируемое глазом, экраном, матрицей или другим квадратичным по интенсивности приемником – не что иное, как двухмерный амплитудный спектр ограниченного апертурой светового поля, испускаемого объектом. Легко получить ту же самую картинку Эйри, если взять квадратную матрицу из одинаковых комплексных чисел (имитирующих плоский волновой фронт от удаленной точки), «вырезать» из нее круглую «апертуру», обнулив края, и сделать Фурье-преобразование всей матрицы.

Короче говоря, если каким-то образом записать поле (синтезировать апертуру) на достаточно большой области без потери амплитудной и фазовой информации, то для получения изображения можно обойтись без гигантских зеркал современных телескопов и мегапиксельных матриц, просто вычисляя Фурье-образ полученного массива данных.

2. Локация спутников и сверхразрешение.

Будем наблюдать движущийся поперек луча зрения стабилизированный объект, подсвеченный непрерывным когерентным лазерным источником. Регистрация отраженного от него излучения производится гетеродинным фотоприемником с небольшой апертурой. Запись сигнала в течение времени t эквивалентна реализации одномерной апертуры длиной vt, где v – тангенциальная скорость движения объекта. Легко оценить потенциальную разрешающую способность такого метода. Посмотрим на околоземный спутник в верхней элонгации, летящий на высоте 500 км со скоростью 8 км/сек. За 0,1 секунды записи сигнала получим «одномерный телескоп» размером 800 метров, теоретически способный рассмотреть в видимом диапазоне детали спутника величиной в доли миллиметра. Неплохо для такого расстояния.

Разумеется, отраженный сигнал на таких расстояниях ослабевает на много порядков. Однако гетеродинный прием (когерентное смешивание с опорным излучением) в значительной степени компенсирует это ослабление. Ведь, как известно, выходной фототок приемника в этом случае пропорционален произведению амплитуд опорного излучения и приходящего сигнала. Будем увеличивать долю опорного излучения и тем самым усиливать весь сигнал.

Можно посмотреть с другой стороны. Спектр записанного сигнала с фотоприемника представляет собой набор доплеровских компонент, каждая из которых есть сумма вкладов от всех точек объекта, имеющих одинаковую лучевую скорость. Одномерное распределение отражающих точек на объекте определяет распределение спектральных линий по частоте. Полученный спектр и является по сути одномерным «изображением» объекта по координате «доплеровский сдвиг». Две точки нашего спутника, расположенные на расстоянии 1 мм друг от друга в плоскости, перпендикулярной лучу зрения, имеют разность лучевых скоростей порядка 0,01-0,02 мм/сек. (Отношение этой разности к скорости спутника равно отношению расстояния между точками к расстоянию до спутника). Разность доплеровских частот этих точек для видимой длины волны 0,5 мк составит (f=2V/λ) порядка 100 Гц. Спектр (доплеровское изображение) от всего микроспутника, скажем, размером 10 см, уложится в диапазон 10 кГц. Вполне измеримая величина.

Можно посмотреть и с третьей стороны. Эта технология представляет собой не что иное, как запись голограммы, т.е. интерференционной картины, возникающей при смешивании опорного и сигнального полей. Она содержит в себе амплитудную и фазовую информацию, достаточную для восстановления полного изображения объекта.

Таким образом, подсвечивая спутник лазером, регистрируя отраженный сигнал и смешивая его с опорным лучом от того же лазера, получим на фотоприемнике фототок, зависимость которого от времени отражает структуру светового поля вдоль «одномерной апертуры», длину которой, как уже было сказано, можно сделать достаточно большой.

Двухмерная апертура, конечно, гораздо лучше и информативнее. Расставим равномерно несколько фотоприемников поперек движения спутника и запишем таким образом отраженное поле на площади vt*L, где L – расстояние между крайними фотоприемниками, которое в принципе ничем не ограничено. Например, те же 800 метров. Тем самым мы синтезируем апертуру «двухмерного телескопа» размером 800*800 метров. Разрешение по поперечной координате (L) будет зависеть от количества фотоприемников и расстояния между ними, по другой, «временной» координате (vt) – от ширины полосы излучения лазера и частоты оцифровки сигнала с фотоприемника.

Итак, мы имеем записанное световое поле на очень большой площади и можем делать с ним все, что угодно. Например, получить двухмерное изображение очень маленьких объектов на очень большом расстоянии без всяких телескопов. Или можно восстановить трехмерную структуру объекта путем цифровой перефокусировки по дальности.

Разумеется, реальная трехмерная конфигурация отражающих точек на объекте не всегда совпадает с их «доплеровским» распределением по лучевым скоростям. Совпадение будет, если эти точки находятся в одной плоскости. Но и в общем случае из «доплеровского изображения» можно извлечь много полезной информации.

3. Что было раньше.

Американская DARPA некоторое время назад финансировала программу , суть которой состояла в реализации подобной технологии. Предполагалось с летящего самолета лоцировать со сверхвысоким разрешением объекты на земле (танки, например), были получены некие обнадеживающие данные. Однако эту программу то ли закрыли, то ли засекретили в 2007 году и с тех пор про нее ничего не слышно. В России тоже кое-что делалось. Вот можно посмотреть картинку, полученную на длине волны 10,6 мк.

4.Трудности технической реализации на длине волны 1,5 мк.

По зрелом размышлении я решил здесь ничего не писать. Слишком много проблем.

5. Кое-какие первичные результаты.

Пока с трудом удалось «рассмотреть» с расстояния 300 метров детали плоского диффузно отражающего металлического объекта размером 6 на 3 мм. Это был кусочек какой-то печатной платы, вот фотка:


Объект вращался вокруг оси, перпендикулярной лучу зрения, регистрация отраженного сигнала происходила примерно в момент максимального отражения (блика). Пятно от лазера, освещающее объект, имело размер около 2 см. Использовались всего 4 фотоприемника, разнесенные на 0,5 метра. Размер синтезированной апертуры оценивается величиной 0,5 м на 10 м.
Собственно, на всякий случай сами записанные сигналы (слева) и их спектры (справа) в относительных единицах:


Из предыдущей фотки объекта фотошопом выделены только интересующие нас освещаемые и отражающие участки, которые требуется увидеть:


Изображение, восстановленное двухмерным фурье-преобразованием из 4 сигналов и смасштабированное для сравнения:


Эта картинка вообще-то состоит всего из 4 строк (и около 300 столбцов), вертикальное разрешение изображения, соответственно, около 0,5 мм, однако темный уголок и обе круглые дырки вроде как видны. Горизонтальное разрешение – 0,2 мм, такова ширина токопроводящих дорожек на плате, видны все пять штук. (Обычный телескоп должен быть двухметрового диаметра, чтобы увидеть их в ближнем ИК).

По правде говоря, полученное разрешение пока далеко от теоретического предела, так что неплохо бы довести до ума эту технологию. Дьявол, как известно, кроется в деталях, а деталей здесь очень много.

Спасибо за внимание.

Одним из важных направлений использования РЛС является их применение на борту летательного аппарата, осуществляющих обзор земной поверхности. В зависимости от решаемых задач, требуемой величины зоны обзора и время обзора различают следующие виды обзора:

· полосовой обзор (переднебоковой обзор);

· секторный обзор;

· телескопический обзор.

Возможны и другие виды обзора, которые являются либо частными случаями вышеперечисленных обзоров, либо их комбинациями.

Мерой углового положения излучающего объекта и параметром, позволяющим измерить угловые координаты и обеспечить разрешение по углу, является частота Доплера. Благоприятные условия для решения этих задач создаются при условии бокового обзора земной поверхности летательного аппарата, выдерживающего курс, частоту и скорость.

Детальность радиолокационного изображения земной поверхности зависит от разрешающей способности в поперечном по отношению к РЛС направлению, а так же от разрешающей способности вдоль линии пути.

Разрешающая способность в поперечном направлении (тангенциальная разрешающая способность) зависит от полосы зондирующих сигналов и угла места объектов в поперечной плоскости.

Разрешающая способность вдоль линии пути различна при некогерентной и когерентной обработке. В первом случае она определяется шириной диаграммы направленности, соответствующей раскрыву размещенной на летательном аппарате антенны. При когерентной обработке, она может быть существенно увеличена соответственно синтезированному раскрыву, определяемому величиной перемещения летательного аппарата за время обработки.

При построении радиолокаторов с синтезированной аппаратурой на борту летательного аппарата устанавливаются слабонаправленная антенна, осуществляющая боковой обзор пространства (рис.6.1). Сигналы, принятые от различных точек траектории запоминаются и обрабатываются, как в антенной решетке, где они складываются синфазно, образуя максимум амплитуды суммарного сигнала.

Синтезированная антенна образуется перемещением одного элемента, ось диаграммы направленности которого ориентирована перпендикулярно прямолинейной траектории полета (рис.6.2).

При использовании импульсных сигналов они принимаются и запоминаются в точках траектории, отстоящих друг относительно друга на расстоянии где - скорость полета; - период повторения импульсов. Далее сигналы суммируются в схеме, изображенной на рис.2. Расстояние , на котором происходит суммирование, представляет собой апертуру синтезированной антенны (рис.6.3).

Суммирование сигналов осуществляется в линии задержки ЛЗ. Различают нефокусированные (рис.6.4.) и фокусированные синтезируемые антенны. Особенностью нефокусированной антенны является суммирование принимаемых сигналов несинфазно. Эквивалентная длинна ограничивается возможностью суммирования сигналов приблизительно в фазе, то есть когда разность расстояний от РЛС до цели не превосходит λ/8 (рис 6.5).

Ввиду малости второго слагаемого, получим

Ширина диаграммы направленности такой антенны

(6.3)

В этом случае тангенциальная разрешающая способность

(6.4)

улучшилась по сравнению с панорамной антенной

где - разрешающая способность по азимуту.

Теперь пропорциональна не R, а .

В фокусированных антеннах в антеннах в цепь элементов решетки вводятся фазовые сдвиги для компенсации перемещения РЛС относительно цели (рис.6.6).

Размер реальной антенны в горизонтальной плоскости равен L, ширина ее диаграммы

Длинна синтезированной антенны равна протяженности траектории полета, на которой РЛС облучает цепь (рис.6.7).

Ширина диаграммы направленности антенны равна

.

Тангенциальная разрешающая способность

. (6.7)

Не зависит от дальности и равна половине размера реальной антенны.

Традиционным путем РЛС с синтезированной антенной построить невозможно так как требуется значительные: длина фокусированной антенны (сотни м); задержка сигналов в линии задержки (десятки с); число суммируемых импульсов (десятки тысяч).

На практике для построения РЛС с синтезированной антенной используется эффект Доплера и согласованная фильтрация. Информация о частоте Доплера используется как мера углового положения. Пусть вдоль прямой х, параллельной линии пути летательного аппарата, лежащей в полосе бокового обзора, расположены излучатели А непрерывных монохромических колебаний частоты f 0 (рис 6.8).

В каждый момент времени излучаемые колебания можно различать по частоте Доплера

. (6.8)

Если оценивать изменения во времени расстояния от приемника до точки А, можно определить закон модуляции сигналов

где - момент времени, когда приемник находиться на кратчайшем расстоянии r 0 от точки А. Квадратному изменению времени запаздывания соответствует линейное изменение мгновенной частоты

(6.10)

Таким образом принимаемый сигнал оказывается частотно-модулированным. При обработке в оптимальном фильтре, согласованном с ожидаемым частотно-модулированным сигналом наблюдается сжатие сигнала. Длительность сжатого сигнала равна

(6.11)

где - длительность импульсной характеристики фильтра. Аналогичный сжаты импульс будет получен, и для сигнала, приходящий от любой другой точки А; временной интервал между этими импульсами будет = где - скорость движения цели. Минимально разрешаемый временной интервал определяется длительностью сжатого импульса

Отношение / = можно рассматривать как меру синтезированного углового разрешения

(6.13)

где = - размер эквивалентного синтезированного раскрыва, образованного при перемещении точки приема за длительность когерентного накопления . Сжатие позволяет получить разрешающую способность как у фокусированной антенны.

Для обеспечения разрешающей способности по дальности необходимо использовать импульсное излучение, причем импульсы должны быть когерентны между собой.

Таким образом, РЛС с синтезированной апертурой должна содержать

1. когерентно - импульсную РЛС с истинной когерентностью;

2. систему обработки сигналов, которая должна производить оптимальную обработку по азимуту (согласованную фильтрацию) в каждом элементе разрешению по дальности.

Один из вариантов такого локатора изображен на рис.6.9.

Могут применятся и другие схемы, однако сигналы должны быть когерентны (например вырезка из одного и того же гармонического колебания).

Выходным элементом приемника когерентно- импульсной РЛС является фазовый детектор, выходное напряжение которого определяется следующим образом

где , - амплитуды напряжений когерентного гетеродина и выходного сигнала;

Начальные фазы колебаний;

Доплеровское смещение частот.

Сигнал от точечной цели на выходе фазового детектора представляет собой импульсную последовательность с огибающей, повторяющей квадрат диаграммы направленности реальной антенны, и амплитудной модуляцией частотой Доплера (рис.6.10) Если в течении периода повторения Т п будет несколько целей, то согласованная фильтрация проводиться по каждой из них.

Существуют следующие способы построения соответствующей аппаратуры:

1. Запись сигналов с фазового детектора на фотопленку с последующей оптической обработкой.

2. Цифровая обработка сигналов.

В основу цифровой обработки положено оптимальное обнаружение пачки радиоимпульсов со случайной начальной фазой. Оптимальная обработка сводится к вычислению модуля корреляционного интеграла. Но так как сигнал не непрерывный, а дискретный, то вычисляется не интеграл, а сумма

где - выработка входного сигнала;

– опорная функция;

n – номер отсчета сигнала изображения;

k – номер отсчета опорной функции;

N – число дискретных значений опорной функции.

В случае цифровой обработки структурной схемы приемника имеет вид, изображенный на рис. 6.11.

Для нахождения действительной и мнимой частей представления входного сигнала устройство обработки строится с квадратурными каналами (рис.6.12). На рис. 6.13 изображена структура цифровой обработки в одном элементе разрешения.

В схеме выполняются операции, предусмотренные согласно формуле для S вых (n): находятся действительные и мнимые части произведения под знаком суммы для каждого из N значений опорной функции и суммируются.


Владельцы патента RU 2397509:

Изобретение относится к области радиотехники, в частности к области техники нелинейной радиолокации, и может использоваться для поиска и обнаружения объектов с нелинейными электрическими свойствами. Достигаемый технический результат изобретения заключается в реализации алгоритма синтезирования апертуры антенны в нелинейной радиолокационной станции (РЛС) и достижении углового разрешения, близкого к потенциальному. Сущность изобретения заключается в измерении средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории вдоль осей абсцисс, ординат, аппликат и реализации в каждом из каналов обработки эхо-сигналов нелинейной РЛС известного алгоритма синтезирования апертуры антенны с учетом результатов измерения. 3 ил.

Изобретение относится к области радиотехники, в частности к области техники нелинейной радиолокации, и может использоваться для поиска и обнаружения объектов с нелинейными электрическими свойствами (ОЭНС).

Известна РСА , состоящая из последовательно соединенных антенного устройства, приемопередатчика, фазовых детекторов, аналого-цифровых преобразователей, цифровой системы обработки, процессора системы индикации, системы индикации, а также системы регистрации и системы передачи по широкополосному каналу, принцип действия которой основан на формировании синтезированного раскрыва антенны больших размеров с использованием реальной антенны малых размеров. При этом для уменьшения влияния случайных пространственных отклонений носителя РСА от заданной траектории (траекторных нестабильностей) на результаты ее функционирования применяется система компенсации траекторных нестабильностей , основанная на комплексном использовании двух инерциальных навигационных систем - штатной инерциальной навигационной системы с коррекцией от радиотехнических датчиков (ГЛОНАСС, ДИСС или РЛС в режиме измерения скорости и угла сноса) и широкополосной инерциальной навигационной системы с системой акселерометров и датчиков угловых скоростей (микронавигация). Однако РСА не позволяет вести поиск и обнаружение ОЭНС, так как обработка эхо-сигналов от радиолокационных целей производится только на несущей частоте зондирующего сигнала (ЗС) ω 0 .

Наиболее близкой по технической сущности (прототипом к предполагаемому изобретению) является нелинейная РЛС (НРЛС), например , состоящая из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации. Принцип работы НРЛС основан на приеме сигналов отклика от ОЭНС на частотах 2ω 0 и 3ω 0 , их обработке и индикации уровней. Это обеспечивается тем, что обычно ОЭНС с полупроводниковыми компонентами имеют на второй гармонике уровень сигналов отклика на 20-30 дБ более высокий, чем на третьей гармонике . Для ОЭНС контактного типа, как правило, выполняется обратное соотношение. Недостатками нелинейной РЛС являются отсутствие учета влияния траекторных нестабильностей на процесс ее функционирования и ненадежность признака сравнения уровней сигналов отклика от ОЭНС на второй и третьей гармониках ЗС вследствие сильной зависимости изменения рассеянной ОЭНС мощности на гармониках ЗС от положения ОЭНС относительно направления зондирования и номера гармоники ЗС .

Задача, на решение которой направлена заявляемая нелинейная РЛС с синтезированной апертурой антенны, состоит в повышении угловой разрешающей способности нелинейной РЛС.

Технический результат изобретения выражается в реализации алгоритма синтезирования апертуры антенны в нелинейной РЛС и достижении углового разрешения, близкого к потенциальному.

Технический результат достигается тем, что в известной НРЛС, состоящей из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации, дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, предназначенная для формирования радиолокационного изображения объектов с нелинейными электрическими свойствами, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

Сущность изобретения заключается в измерении средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории вдоль осей абсцисс, ординат, аппликат и реализации в каждом из каналов обработки эхо-сигналов нелинейной РЛС известного алгоритма синтезирования апертуры антенны с учетом результатов измерения, что позволяет достичь угловой разрешающей способности, близкой к потенциальной.

Структурная схема предложенной нелинейной РЛС с синтезированной апертурой антенны приведена на фиг.1.

Предложенная нелинейная РЛС с синтезированной апертурой антенны состоит из передатчика 5, передающей антенны 1, приемных антенн первого и второго каналов 2 и 4, приемников первого и второго каналов 7 и 8, устройства индикации 26, опорного генератора 3, синтезатора частот 6, блока компенсации траекторных нестабильностей 19, устройств сдвига фазы первого и второго каналов 9 и 10, первого и второго фазовых детекторов первого канала 11 и 12, первого и второго фазовых детекторов второго канала 13 и 14, первого и второго аналого-цифровых преобразователей первого канала 15 и 16, первого и второго аналого-цифровых преобразователей второго канала 17 и 18, первого и второго вычислителей опорной функции первого канала 20 и 21, первого и второго вычислителей опорной функции второго канала 22 и 23, цифровых систем обработки первого и второго каналов 24 и 25, соединенных, как показано на фиг.1.

Передатчик 5 формирует зондирующий сигнал на частоте ω 0 с заданными параметрами (мощность, вид модуляции и т.д.). Передающая антенна 1 предназначена для излучения зондирующего сигнала на частоте ω 0 . Приемные антенны первого и второго каналов 2 и 4 служат для приема эхо-сигналов от ОЭНС на частотах 2ω 0 и 3ω 0 соответственно. Приемники первого и второго каналов 7 и 8 переносят сигналы, принятые на частотах 2ω 0 и 3ω 0 , на промежуточную частоту ω пр и усиливают их. Опорный генератор 3 вырабатывает сигнал стабильной частоты ω ог. Синтезатор частот 6 формирует на своих первом и втором выходах соответственно сигналы несущей ω 0 и промежуточной ω пр частот. Устройства сдвига фазы первого и второго каналов 9 и 10 осуществляют сдвиг фазы опорного сигнала в каждом из каналов на π/2. Первые фазовые детекторы первого и второго каналов 11 и 13 выделяют синусные составляющие сигналов в соответствующих каналах, а вторые фазовые детекторы первого и второго каналов 12 и 14 - косинусные. Первый и второй аналого-цифровые преобразователи каждого канала 15, 16, 17 и 18 предназначены для преобразования аналоговых сигналов в цифровые. Блок компенсации траекторных нестабильностей 19 отслеживает случайные отклонения носителя НРЛС от заданной траектории и формирует соответствующий сигнал рассогласования для коррекции опорной функции. Первые вычислители опорных функций первого и второго каналов 20 и 22 формируют синусные составляющие опорных функций, вторые вычислители опорных функций первого и второго каналов 21 и 23 - косинусные составляющие опорных функций соответствующих каналов с учетом сигналов рассогласования, поступающих из блока компенсации траекториях нестабильностей 19. Цифровые системы обработки первого и второго каналов 24 и 25 служат для формирования РЛИ ОЭНС по сигналам, принятым на частотах 2ω 0 и 3ω 0 . Устройство индикации 26 необходимо для отображения РЛИ с требуемой яркостью, динамическим диапазоном и масштабом.

Заявляемая нелинейная РЛС с синтезированной апертурой антенны работает следующим образом. В течение временного интервала синтезирования апертуры антенны T s обеспечивается прямолинейное движение носителя нелинейной РЛС с постоянной скоростью (наиболее важный для практики случай) . Для обеспечения когерентности сигнал опорного генератора 3 на частоте ω ог подается на вторые входы приемников первого и второго каналов 7 и 8, являющиеся входами внешнего опорного генератора, а также на вход синтезатора частот 6, который формирует сигналы несущей ω 0 и промежуточной ω пр частот. По сигналу на частоте ω 0 , поступающему с первого выхода синтезатора частот 6 на вход передатчика 5, формируется ЗС с требуемыми параметрами на частоте ω 0 . Сформированный таким образом сигнал подается на вход передающей антенны 1 и излучается в заданную область пространства. Сигнал на промежуточной частоте ω пр со второго выхода синтезатора частот 6 поступает на вторые входы первых фазовых детекторов первого и второго каналов 11 и 13, а также на входы устройств сдвига фазы первого и второго каналов 9 и 10. Кроме того, сигнал на промежуточной частоте ω пр поступает также с выхода приемника каждого канала на первый вход первого фазового детектора соответствующего канала. Выходной сигнал устройства сдвига фазы каждого канала 9 и 10 подается на второй вход второго фазового детектора соответствующего канала 12 и 14. Так как опорные сигналы на промежуточной частоте ω пр на вторых входах первого и второго фазовых детекторов каждого канала 11 и 12, 13 и 14 имеют сдвиг по фазе π/2, на выходах первых фазовых детекторов каждого канала 11 и 13 формируются синусные составляющие поступающих из приемников первого и второго каналов 7 и 8 сигналов, а на выходах вторых фазовых детекторов 12 и 14 - косинусные составляющие. Сформированные квадратурные составляющие преобразуются в цифровой вид с помощью первого и второго аналого-цифровых преобразователей каждого канала 15, 17 и 16, 18 и подаются соответственно на первый и второй входы цифровой системы обработки соответствующего канала 24 и 25. Сигнал рассогласования, вырабатываемый блоком компенсации траекторных нестабильностей 19, поступает в каждом из каналов на входы первого и второго вычислителей опорной функции 20, 22 и 21, 23. Первые и вторые вычислители опорной функции каждого канала 20, 22 и 21, 23 формируют соответственно синусную и косинусную составляющие опорной функции, которые поступают соответственно на третий и четвертый входы цифровой системы обработки соответствующего канала 24 и 25. В цифровых системах обработки первого и второго каналов 24 и 25 реализуется известный алгоритм синтезирования апертуры антенны и в результате формируются РЛИ ОЭНС по сигналам, принятым на частотах 2ω 0 и 3ω 0 соответственно. Сформированные таким образом РЛИ поступают с выходов цифровых систем обработки первого и второго каналов 24 и 25 на соответствующие входы устройства индикации 26, с помощью которого производится визуальное отображение РЛИ.

Блок компенсации траекторных нестабильностей может быть выполнен, например, в виде устройства, структурная схема которого приведена на фиг.2.

Блок компенсации траекторных нестабильностей включает генератор тактовых импульсов 1, устройство масштабирования 2, устройство определения направления перемещения по осям прямоугольной системы координат 3, таймер 4, запоминающее устройство 5, блок ключей 6, устройство вычитания 7, блок суммирования 8, блок запоминающих устройств 9, блок масштабирования 10, блок умножения кодов 11, сумматор 12, преобразователь кодов 13, соединенных, как показано на фиг.2.

Генератор тактовых импульсов 1 предназначен для формирования последовательности импульсов заданной длительности τ и с периодом Т и. Таймер 4 служит для поддержания блока ключей 6 в открытом состоянии в течение заданного интервала времени T t . Устройство определения направления перемещения по осям прямоугольной системы координат 3 формирует на первом, втором и третьем выходах сигналы, соответствующие перемещению носителя НРЛС за время Т и вдоль осей абсцисс Δx i , ординат Δy i и аппликат Δz i соответственно, где Блок ключей 6 обеспечивает прохождение сигналов с первого, второго и третьего входов устройства определения направления перемещения по осям прямоугольной системы координат 3 на выход соответствующего ключа блока ключей 6. Блок суммирования 8 служит для суммирования сигналов, имеющихся на первых и вторых входах каждого устройства суммирования блока суммирования 8. Блок запоминающих устройств 9 необходим для хранения результата суммы, полученного в блоке суммирования 8. Блок масштабирования 10 усредняет результаты суммирования сигналов и формирует на первом, втором и третьем выходах сигналы, соответствующие средним значениям перемещений носителя НРЛС вдоль осей абсцисс ординат и аппликат Блок умножения кодов 11 предназначен для возведения в квадрат значений и Сумматор 12 служит для реализации математической операции

Преобразователь кодов 13 выполняет математическую операцию вычисления средней скорости перемещения носителя НРЛС

Устройство масштабирования 2 необходимо для вычисления эталонного значения перемещения носителя НРЛС вдоль оси абсцисс В запоминающем устройстве 5 хранится полученное значение Δx 0 . В устройстве вычитания 7 осуществляется математическая операция вычитания значения текущего перемещения носителя НРЛС вдоль оси абсцисс прямоугольной системы координат Δx i из эталонного значения Δх 0 .

Блок компенсации траекторных нестабильностей работает следующим образом. Сначала измеряется средняя скорость движения носителя НРЛС.

Включение режима измерения скорости осуществляется вручную с помощью включения таймера 4, по окончании работы которого производится автоматическое отключение, т.е. продолжительность режима измерения значения определяется временем T t . В режиме измерения средней скорости тактовые импульсы длительностью τ и с периодом Т и, вырабатываемые генератором тактовых импульсов 1, поступают на вход устройства определения направления перемещения по осям прямоугольной системы координат 3, которое при движении носителя НРЛС формирует на своих первом, втором и третьем выходах значение перемещений вдоль осей абсцисс Δx i , ординат Δу i и аппликат Δz i соответственно. В течение времени T t сигнал с выхода таймера 4 поддерживает блок ключей 6 в открытом состоянии, в результате чего сигналы с первого, второго и третьего выходов устройства определения направления перемещения по осям прямоугольной системы координат 3, поступающие на первые входы соответствующих ключей блока ключей 6, подаются на первые входы соответствующих устройств суммирования блока суммирования 8. Блок суммирования 8 совместно с блоком запоминающих устройств 9 суммируют цифровые коды перемещений вдоль осей абсцисс, ординат и аппликат, которые затем с выходов первого, второго и третьего запоминающих устройств второго блока запоминающих устройств 9 соответственно поступают на входы соответствующих устройств масштабирования блока масштабирования 10, в которых осуществляется умножение поступивших сигналов на цифровой код величины и получение в результате средних значений перемещений за интервал времени Т и вдоль осей абсцисс ординат и аппликат Полученные таким образом сигналы поступают затем в блок умножения кодов 11 и сумматор 12 с целью получения суммы квадратов указанных сигналов которая поступает в преобразователь кодов 13, где в соответствии с (1) преобразуется в значение средней скорости Полученное значение подается на вход устройства масштабирования 2, где путем его умножения на величину Т и формируется эталонное значение перемещения носителя НРЛС вдоль оси абсцисс Сигнал Δx 0 с выхода устройства масштабирования 2 поступает на вход запоминающего устройства 5, где запоминается и хранится до момента следующего определения средней скорости По окончании измерения при функционировании нелинейной РЛС с синтезированной апертурой антенны, сигнал Δх 0 с выхода запоминающего устройства 5 подается на первый вход устройства вычитания 7, на второй вход которого поступает сигнал с первого выхода устройства определения направления перемещения по осям прямоугольной системы координат 3. В устройстве вычитания 7 осуществляются математические операции формирования сигналов, пропорциональных отклонению параметров движения носителя НРЛС вдоль оси абсцисс прямоугольной системы координат от заданных параметров опорной траектории δx i =Δx 0 -Δx i .

Потенциальное улучшение К угловой разрешающей способности НРЛС при синтезировании апертуры антенны было теоретически исследовано в соответствии с выражением

где Δl p и Δl - соответственно угловые разрешающие способности НРЛС без использования и с использованием алгоритма синтезирования апертуры антенны; λ ЗС - длина волны ЗС; R - расстояние между НРЛС и ОЭНС; d - размер реальной приемной антенны; - номер гармоники ЗС; - скорость движения носителя НРЛС; θ н - угол наблюдения ОЭНС. Расчеты, проведенные для случая использования в нелинейном локаторе «Люкс» метода синтезирования апертуры антенны при размерах реальных приемных антенн d=0,25 м для режима бокового обзора пространства (θ н =π/2), а также при T s =2 с, R=3 м, λ ЗС =0,3 м, свидетельствуют об улучшении углового разрешения на второй и третьей гармониках ЗС в 32 и 48 раз соответственно.

Эффективность функционирования блока компенсации траекторных нестабильностей можно оценить, воспользовавшись оценкой искажений РЛИ ОЭНС при отсутствии компенсации траекторных нестабильностей для случая прямолинейного равномерного движения носителя вдоль координаты х при фиксированных координатах у=у 0 , z=z 0 . В этих целях рассчитаем импульсные отклики нелинейной РЛС с синтезированной апертурой антенны (РЛИ ОЭНС) для случаев отсутствия и наличия случайных отклонений носителя НРЛС от заданной траектории

где U(t+τ) - траекторный сигнал; T s - временной интервал СА антенны; τ - временной сдвиг; h(t) - опорная функция.

В качестве опорной h(t) выбирается взвешенная функция, комплексно сопряженная с сигналом, отраженным от нелинейной цели

где H(t) - действительная весовая функция; - изменение текущего расстояния между НРЛС и ОЭНС.

Полагая в случае компенсации траекторных нестабильностей δx 1 =0, а в случае ее отсутствия - и задаваясь, например, значениями H(t)=1, T s =2 с, R=3 м, λ ЗС =0,3 м, n=2, х=1 м, x 0 =0 м, получим в соответствии с (3) импульсные отклики J 1 (r) и представленные после нормировки соответствующими графическими зависимостями 1 и 2 на фиг.3. Как показывает расчет, ширина главного лепестка импульсного отклика в 1,15 раза больше, чем J 1 (τ). Это означает, что блок компенсации траекторных нестабильностей, выполненный в виде устройства, структурная схема которого приведена на фиг.2, при заданных условиях позволяет улучшить разрешающую способность нелинейной РЛС с синтезированной апертурой антенны по угловой координате на 15%.

Таким образом, в предложенной нелинейной РЛС с синтезированной апертурой антенны повышается угловая разрешающая способность за счет формирования антенного раскрыва больших размеров на заданной траектории перемещения носителя НРЛС, а блок компенсации траекторных нестабильностей, выполненный в виде устройства, структурная схема которого приведена на фиг.2, обеспечивает потенциально достижимую угловую разрешающую способность (ее потенциальное улучшение в соответствии с выражением (2)) за счет уменьшения искажений РЛИ, обусловленных расширением главного лепестка импульсного отклика (3).

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестна нелинейная РЛС с синтезированной апертурой антенны, отличающаяся от известной НРЛС, состоящей из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации, тем, что дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что нелинейная РЛС с синтезированной апертурой антенны позволяет достичь угловой разрешающей способности, близкой к потенциальной.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы типовые радиотехнические узлы и устройства, применяемые в РСА , а также оборудование и материалы СВЧ-диапазона широко распространенной технологии .

Блок компенсации траекторных нестабильностей может быть выполнен с использованием типовых импульсных и цифровых устройств .

Так, устройство определения направления перемещения по осям прямоугольной системы координат может быть выполнено, например, на базе оптического манипулятора типа «мышь» при условии фиксации координаты у=у 0 =h 0 , где h 0 - высота размещения плоской поверхности для перемещения оптического манипулятора типа «мышь» над уровнем пола в помещении, где используется нелинейная РЛС с синтезированной апертурой антенны. Генератор тактовых импульсов может быть построен как транзисторный блокинг-генератор или как блокинг-генератор на интегральных микросхемах . Для реализации блока ключей могут быть избраны транзисторные ключи . Таймер выполняется однотактным . Основой запоминающего устройства и блока запоминающих устройств могут служить полупроводниковые оперативные или постоянные запоминающие устройства. Сумматор и блок суммирования могут быть построены с использованием схемы сумматора параллельного действия . Блок масштабирования, устройство масштабирования и преобразователь кодов могут быть выполнены по известной схеме преобразователя кодов . Устройство вычитания предполагается построить на базе сумматоров, осуществляющих вычитание . Блок умножения кодов выполняется на базе известных устройств для умножения кодов .

Источники информации

1. Антипов В.Н., Горяинов В.Т., Кулин А.Н. и др. Радиолокационные станции с цифровым синтезированием апертуры антенны. / Под ред. В.Т.Горяинова. - М.: Радио и связь, 1988.

2. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. - М.: Радиотехника, 2005.

3. Нелинейный локатор «Люкс». Техническое описание и инструкция по эксплуатации. - М.: Новоком, 2005.

4. Горбачев А.А., Колданов А.П., Ларцов С. В., Тараканков С.П., Чигин Е.П. Признаки распознавания нелинейных рассеивателей электромагнитных волн // Нелинейная радиолокация. Сборник статей. Часть 1. / Под. Ред. Горбачева А.А., Колданова А.П., Потапова А.А., Чигина Е.П. - М.: Радиотехника, 2005. - С.15-23.

5. Семенов Д.В., Ткачев Д.В. Нелинейная радиолокация: концепция NR // Специальная техника. / НИИ специальной техники МВД России, 1999, №1-2. - С.17-22.

6. Кондратенков Г.С., Потехин В.А., Реутов А.П., Феоктистов Ю.А. Радиолокационные станции обзора Земли. / Под ред. Г.С.Кондратенкова. - М.: Радио и связь, 1983.

7. Гольденберг Л.М. Импульсные и цифровые устройства: Учебник для институтов связи. - М.: Связь, 1973.

8. Лебедев О.Н., Сидоров А.М. Импульсные и цифровые устройства: Цифровые узлы и их проектирование на микросхемах. - Л.: ВАС, 1980.

9. Справочник по радиолокации. / Под ред. М.Сколника, Нью-Йорк, 1970: Пер. с англ. (в четырех томах). / Под общей ред. К.Н.Трофимова; Том 2. Радиолокационные антенные устройства. - М.: Сов. радио, 1979.

10. Дулин В.Н. Электронные и квантовые приборы СВЧ: Учебное пособие для студентов высших технических учебных заведений. Издание 2-е, переработанное. - М.: Энергия, 1972.

11. С точки зрения оптических мышей…//URL:http://www.iXBT.com.

12. Симонович С.В. и др. Большая книга персонального компьютера. - М.: ОЛМА Медиа Груп, 2007.

13. Браммер Ю.А. Импульсные и цифровые устройства: Учеб. для студентов электрорадиоприборостроительных сред. спец. учеб. заведений. / Ю.А.Браммер, И.Н.Пащук. - 6-е изд., перераб. и доп. - М.: Высшая школа, 2002.

Нелинейная радиолокационная станция (РЛС) с синтезированной апертурой антенны, состоящая из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник зондирующего сигнала (ЗС), каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройство индикации, отличающаяся тем, что дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, предназначенная для формирования радиолокационного изображения объекта с нелинейными электрическими свойствами, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измерений средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

 

 

Это интересно: